Bonded Boron/Epoxy Doublers for Reinforcement of Metallic Aircraft Structures
PRESENTATION OUTLINE

• Boron Doubler Description
 – Reinforcement Concept
 – Advantages

• Installation Process
 – Surface Preparation
 – Materials and Bonding Process
 – Inspection

• Applications
 – Military
 – Commercial

• Test Programs
Boron Epoxy Doublers
Boron Doubler Reinforcement Concept

- Metal Structure
- Applied Stress
- Structural Damage
 (Stop-Drilled Crack Shown)
- Multi-ply Bonded Boron/Epoxy Doubler
- Film Adhesive
- Boron Fiber Direction
- Applied Stress
ADVANTAGES OF BORON/EPOXY DOUBLERS

• Bonded Installation
 – No Additional Holes in Aircraft
 – No Fastener-Associated Stress Risers
 – Only One Side Access Required
 – Can Reinforce Where Riveting is Not Possible

• High Specific Modulus
 – Efficient Load Transfer
 – Thinner, Lighter
ADVANTAGES OF BORON/EPOXY DOUBLERS

• Non-Metallic Material
 – Conformable
 – Does Not Corrode
 – Galvanically Inert

• Used for Damage Repair and Structural Enhancement
Doubler Installation Process
INSTALLATION PROCESS

• Lay-Up
 – Design for Specific Load Configuration
 – Standard Laminate Convention
 – Can Be Assembled Ahead of Time
 – Doubler Can Be Pre-cured for Specific Configurations
INSTALLATION PROCESS

• Aluminum Surface Preparation

 Most Critical Step
 – Paint Removal Per Conventional Process
 – Clean and Abrade Surface Seal Underlying Fasteners
 – Surface Treatment
 • Phosphoric Acid Anodize - PACS Process
 • Silane
 • Others
 – Apply and Cure Primer
INSTALLATION PROCESS

• Bond Onto Aircraft
 – Structural Film Adhesive
 – Portable Cure Equipment
 – Vacuum Bag Pressure
 – Doubler Can Be Co-cured

• Inspect
 – Ultrasonics for Bond/Composite flaws
 – Eddy Current for Underlying Crack Growth

• Seal/Paint
Boron Doubler Installation Schematic
Applications
MILITARY APPLICATIONS

<table>
<thead>
<tr>
<th>INSTALLER</th>
<th>AIRCRAFT</th>
<th>DESCRIPTION</th>
<th># AIRCRAFT</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROCKWELL</td>
<td>B-1</td>
<td>DORSAL LONGERON</td>
<td>100</td>
<td>OEM INSTALLATION</td>
</tr>
<tr>
<td>USAF</td>
<td>F-111</td>
<td>LOWER WING PIVOT</td>
<td>411</td>
<td></td>
</tr>
<tr>
<td>AUSTRALIAN AIR FORCE</td>
<td>F-111</td>
<td>WING PIVOT</td>
<td></td>
<td>APPROX 3500</td>
</tr>
<tr>
<td></td>
<td>C-130</td>
<td>WING STIFFENER</td>
<td></td>
<td>DOUBLERS ON</td>
</tr>
<tr>
<td></td>
<td>MACCHI MIRAGE</td>
<td>WHEEL</td>
<td></td>
<td>VARIOUS AIRCRAFT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WING SKIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOCKHEED</td>
<td>C-141</td>
<td>WING PLANK</td>
<td>20</td>
<td>VARIOUS "BLANKET" APPLICATIONS</td>
</tr>
<tr>
<td></td>
<td>C-130</td>
<td>LEADING EDGES ETC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>USAF</td>
<td>B-1</td>
<td>25 DEGREE LONGERON</td>
<td>96</td>
<td>FATIGUE CONSIDERATIONS</td>
</tr>
<tr>
<td>CANADIAN A.F.</td>
<td>F-5</td>
<td>UPPER WING SKIN</td>
<td>~40</td>
<td></td>
</tr>
<tr>
<td>USAF</td>
<td>C-141</td>
<td>WING RISER WEP HOLES</td>
<td>~150</td>
<td>OVER 2000</td>
</tr>
<tr>
<td>BOEING WICHITA</td>
<td>B-52</td>
<td>WING SKIN</td>
<td>1</td>
<td>DEVELOPMENT</td>
</tr>
</tbody>
</table>
MILITARY APPLICATIONS UNDER DEVELOPMENT

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Doubler Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-15, F-14</td>
<td>Lower Wing Skin</td>
</tr>
<tr>
<td>B-1</td>
<td>Horizontal Stabilizer Spar</td>
</tr>
<tr>
<td>C-130</td>
<td>Outer Wing Stringers</td>
</tr>
<tr>
<td>B-52</td>
<td>Upper Wing Skin</td>
</tr>
<tr>
<td>F-16</td>
<td>Lower wing Fuel Vent</td>
</tr>
<tr>
<td>T-38</td>
<td>Lower Wing door Frame</td>
</tr>
<tr>
<td>C-5</td>
<td>Nose Landing Gear Door</td>
</tr>
<tr>
<td>KC-135</td>
<td>Upper Wing Skin</td>
</tr>
</tbody>
</table>
COMMERCIAL APPLICATIONS

<table>
<thead>
<tr>
<th>INSTALLER</th>
<th>AIRCRAFT</th>
<th>DESCRIPTION</th>
<th># AIRCRAFT</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DASSAULT (FRANCE)</td>
<td>MERCURE</td>
<td>DOOR FRAMES</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>ARL AUSTRALIA</td>
<td>767</td>
<td>KEEL BEAM</td>
<td>1</td>
<td>CORROSION REPAIR</td>
</tr>
<tr>
<td></td>
<td>727</td>
<td>FUSELAGE LAP JOINT</td>
<td>1</td>
<td>DEMO</td>
</tr>
<tr>
<td></td>
<td>747</td>
<td>VARIOUS</td>
<td>1</td>
<td>DEMOS</td>
</tr>
<tr>
<td>BOEING</td>
<td>747</td>
<td>STATIC FATIGUE</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>FEDERAL EXPRESS</td>
<td>747</td>
<td>25 LOCATIONS</td>
<td>2</td>
<td>DEMO</td>
</tr>
<tr>
<td>FEDERAL EXPRESS</td>
<td>MD-11</td>
<td>FUSELAGE</td>
<td>1</td>
<td>WRINKLED SKIN</td>
</tr>
<tr>
<td>LYCOMING AND SUBS</td>
<td>BAE-146</td>
<td>ENGINE COWL</td>
<td>~100</td>
<td>ALF-502 ENGINE</td>
</tr>
<tr>
<td>CESSNA</td>
<td>CITATION V</td>
<td>FUSELAGE</td>
<td>1</td>
<td>DEMO</td>
</tr>
<tr>
<td>DELTA</td>
<td>LL1011</td>
<td>DOOR FRAME</td>
<td>1</td>
<td>FAA APPROVAL</td>
</tr>
</tbody>
</table>
Performance Test Programs
PERFORMANCE TEST PROGRAM

- Performed By Boeing Technology Services
- Objectives:
 - Installation Process Specification Development
 - Structural Analysis - Bonded Line Stresses
 - Performance Testing
 - Validation of Structural Enhancement - Static Tests
 - Validation of Crack Growth Suppression - Fatigue
PROCESS SPECIFICATION DEVELOPMENT

- Specification Number D658-10183-1
 - Detailed Documentation of Materials, Equipment and Processing Steps
 - Oriented Toward Boeing Process Specifications
 - Critical Steps Validated Through Empirical Testing
STRUCTURAL ANALYSIS

- INCAP - Laminate Analysis Program Used to Size Doublers for Testing
- COSMOS - 2D FEA Used to Analyze Internal Stresses Due to Cure Temperatures
- NIKE - 3D FEA Used to Evaluate Specimen Geometries
- ANSYS - FEA Used to Characterize Thermal and Residual Stresses
STRUCTURAL ANALYSIS

- Information Gained from Analysis
 - Shear and Peel Stresses Peak at Doubler Edge
 - Stresses in Front of Doubler are 25% Higher Than Applied Axial Stress
 - Residual Stresses from Bonding Operations (thermal) Oppose Axial Stresses During Service - Reducing Peak Stress in Doubler
PERFORMANCE TESTING - STATIC TESTS

- Objective: Determine if Doubler Restores Ultimate Aluminum Strength (78 ksi, 538 MPa) to Cracked Specimen
- Tests on Baseline Specimens Before and After Fatigue Testing
PERFORMANCE TESTING - STATIC TEST RESULTS

- **Pre-Fatigue - Quantity: 12**
 - All Specimens > 78 ksi (538 MPa) Requirement
 - Most Broke in Aluminum Outside Doubler

- **Post-Fatigue - Quantity: 91**
 - 87 Tests > 78 ksi (538 MPa)
 - 4 Tests 42 to 76 ksi (290 to 524 MPa)
 - Aluminum Failure with Doubler Intact
PERFORMANCE TESTING

• Tension - Tension Fatigue
 - Primary Objectives:
 - Determine if Doubler Restores Cyclic Capability of Aircraft Structure
 - Baseline Specimens at Room Temperature
 - Parametric Studies Relating to Doubler Design
 • Sub-Ambient (-65°F, -54°C)
 • Geometry Sensitivities
 • Impact
FATIGUE TARGETS

<table>
<thead>
<tr>
<th>Aircraft</th>
<th>Design Stress</th>
<th>Design Cycles</th>
<th>Test Stress</th>
<th>Test Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>737</td>
<td>0 to 15 ksi</td>
<td>75,000</td>
<td>3 to 20 ksi</td>
<td>300,000</td>
</tr>
<tr>
<td></td>
<td>(0 to 103 MPa)</td>
<td></td>
<td>(21 to 138 MPa)</td>
<td></td>
</tr>
<tr>
<td>747</td>
<td>0 to 18 ksi</td>
<td>20,000</td>
<td>3 to 20 ksi</td>
<td>300,000</td>
</tr>
<tr>
<td></td>
<td>(0 to 124 MPa)</td>
<td></td>
<td>(21 to 138 MPa)</td>
<td></td>
</tr>
</tbody>
</table>
FATIGUE RESULTS

- Unpatched Specimens Fail at 4000 Cycles
- Baseline: 15 Specimens
 - 12 Specimens - No Failure - No Crack Growth
 - 1 - Crack Growth at 161,385 cycles - No Failure
 - 1 - Crack Growth at 17,464 cycles - No Failure
 - 1 - Failure at 89,454
 - Failure and Crack Growth a Result of Imperfections in Stop Drill Hole
FATIGUE RESULTS

- Observations From Parametric Studies
 - Baseline Performance Minimally Affected By:
 - Variations in Doubler Geometries
 - Changes in Cure Pressure
 - Increased Crack Length (1”, 2.54 cm)
 - Moisture and Solvent Immersion
 - Impact @ 100 and 300 Lb-in
 - Edge Disbonds 0.5” in (1.27 cm) Diameter
FATIGUE TESTING

• Observations from Parametric Studies
 - Crack Re-initiation More Likely to Occur:
 • With In-Line Rivets Near Cracks
 • Disbonds Beneath Cracked Area
 • -65 Degree F (53.8° C) Environment
 • No Stop Drill Hole
 • Too Thin a Doubler
 - When Crack Re-initiation Occurs the Crack Growth is Linear (Not Catastrophic)
CONCLUSIONS

• Boron Epoxy Doublers Have Been Successfully Used on Aircraft For Many Years
• Process Has Been Defined and Documented
• When Properly Designed and Applied, Boron Epoxy Doublers Restore Structural Integrity